Planetary Science Division Status Report

Outline

- Mission events & highlights
- Discovery and New Frontiers Status
- Mars Program Status
- Recent Europa Activities

Planetary Science Missions Events

2014

July – *Mars 2020* Rover instrument selection announcement

* Completed

August 6 – 2nd Year Anniversary of *Curiosity* Landing on Mars September 21 – *MAVEN* inserted in Mars orbit

October 19 – Comet Siding Spring encountered Mars

September – Curiosity arrives at Mt. Sharp

November 12 – ESA's Rosetta mission lands on Comet Churyumov–Gerasimenko

December 2/3 – Launch of *Hayabusa-2* to asteroid 1999 JU₃

2015

March 6 – *Dawn* inserted into orbit around dwarf planet Ceres

April 30 – MESSENGER spacecraft impacts Mercury

May 26 – Europa mission instruments selected

July 14 – *New Horizons* flies through the Pluto system

September – Discovery 2014 Step 1 selection

December 7 – Akatsuki inserted into orbit around Venus

2016

January – Launch of ESA's ExoMars Trace Gas Orbiter

March – Launch of *InSight*

July – Juno inserted in Jupiter orbit

July - ESA's Bepi Colombo launch to Mercury

September – Discovery 2014 Step 2 selection

September – *InSight* Mars landing

September – Launch of Asteroid mission *OSIRIS* – *REx* to asteroid Bennu

September – Cassini begins to orbit between Saturn's rings & planet

MESSENGER: BY THE NUMBERS

8.73 BILLION miles traveled

32.5 TRIPS around the Sun

291,008 IMAGES returned to Earth

TERABYTES of science data released to public

91,730 average speed (relative to the Sun)

JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

O MILES lowest altitude above Mercury

FLYBYS
of the
inner planets

41.25 MILLION S H O T S by the Mercury Laser Altimeter

8 MERCURY SOLAR DAYS

1,504 EARTH DAYS

in orbit

4,100
ORBITS
of Mercury
completed

CARNEGIE
INSTITUTION FOR
SCIENCE

MESSENGER

EOM for MESSENGER

Dynamic Magnetosphere

Global Contraction

Polar Deposits

Volatile-Rich Planet

Dawn's Approach

RC 2 Feb 19

Resolution 4 km/pixel

The Types of Terrain

RC 2 - Feb 19

Mapping the Water Vapor to Ceres

Ceres Science Orbits

- Rotation Characterization 3
 - Duration 1 orbit (20 days)
- Survey Orbit starting June 5th
 - Duration 7 orbits (22 days)
- High Altitude Mapping Orbit (HAMO)
 - Duration 70 orbits (56 days)
- Low Altitude Mapping Orbit (LAMO)
 - Duration 404 orbits (92 days)

Total of 406 days of operations are planned at Ceres

The New Pluto System

NH LORRI OPTICAL NAVIGATION CAMPAIGN 3

PROPER MOTION - IMAGE DECONVOLVED

2015-04-12 03:27:00 UTC

DISTANCE: 111,179,688 KM

CLOSEST APPROACH: 93.35 days

Pluto Zoom x3

Closest Approach On July 14, 2015

New Horizons Pluto Flyby

BISTANCE TO PLUTO 8,238.3 Miles CLOSEST APPROACH -00h 05m 25.8s

2015-07-14 11:45:38.7 UTC

New Horizons Pluto Flyby

210,779.6 Miles CLOSEST APPROACH -06h 51m 27.1s

COMPUTER SIMULATION

2015-07-14 04:59:37.5 UTC

Discovery and New Frontiers Status

Discovery and New Frontiers

- Address high-priority science objectives in solar system exploration
- Opportunities for the science community to propose full investigations
- Fixed-price cost cap full and open competition missions
- Principal Investigator-led project

- Established in 1992
- \$450M cap per mission excluding launch vehicle and operations phase (FY15\$)
- Open science competition for all solar system objects, except for the Earth and Sun

- Established in 2003
- \$850M cap per mission excluding launch vehicle and operations phase (FY15\$)
- Addresses high-priority investigations identified by the National Academy of Sciences

Discovery Program

Mars evolution: Mars Pathfinder (1996-1997)

Lunar formation: Lunar Prospector (1998-1999)

NEO characteristics: NEAR (1996-1999)

Solar wind sampling: Genesis (2001-2004)

Comet diversity: CONTOUR (2002)

Nature of dust/coma: Stardust (1999-2011)

Comet internal structure: Deep Impact (2005-2012)

Lunar Internal Structure GRAIL (2011-2012)

Mercury environment: MESSENGER (2004-2015)

Lunar surface: LRO (2009-TBD)

Mars Interior: InSight (2016-TBD)

Status of Discovery Program

<u>Discovery 2014</u> - Proposals in review for September Selection

- About 3-year mission cadence for future opportunities Missions in Development

- InSight: Confirmation to begin ATLO on March 24, 2015
- Strofio: Delivered to SERENA Suite (ASI) for BepiColombo
 Missions in Operation
 - Dawn: In orbit around Ceres as of March 6

Missions in Extended Operations

- MESSENGER: Completed low altitude science operations before impact with Mercury
- LRO: In stable elliptical orbit, passing low over the lunar south pole.

New Frontiers Program

1st NF mission New Horizons:

Pluto-Kuiper Belt

Flyby July 14, 2015
PI: Alan Stern (SwRI-CO)

2nd NF mission JUNO:

Jupiter Polar Orbiter

Launched August 2011
Arrives July 2016
PI: Scott Bolton (SwRI-TX)

3rd NF mission OSIRIS-REx:

Asteroid Sample Return

To be launched: Sept. 2016
PI: Dante Lauretta (UA)

Status of New Frontiers Program

Next New Frontiers AO - to be released by end of Fiscal Year 2016

- New ROSES call for instrument/technology investments released
- Candidate mission list and nuclear power sources under consideration

<u>Missions in Development</u> - OSIRIS REX

- Launch in Sept 2016 & encounter asteroid Bennu in Oct 2018.
- Operate at Bennu for over 400 days.
- Returns a sample in 2023 that scientists will study for decades with ever more capable instruments and techniques.

Missions in Operation

- New Horizons:
 - Spacecraft is 32 AU from the sun and <1 AU from Pluto
 - Pluto system encounter July 14, 2015
 - HST identified 2 KBO's beyond Pluto for potential extended mission
- Juno:
 - Spacecraft is 4.5 AU from the sun and 1.5 AU from Jupiter
 - Orbit insertion is July 4, 2016

New Frontiers #4 Focused Missions

Comet Surface Sample Return

Saturn Probes

Lunar South Pole Aitken Basin Sample Return

Trojan Tour & Rendezvous

Venus In-Situ Explorer

New Frontiers #5 Focused Missions

Added to the remaining list of candidates:

Lunar Geophysical Network

Io Observer

Mars Program Status

Europa Activities

Europa Multi-Flyby Mission Science Goal & Objectives

- Goal: Explore Europa to investigate its habitability
- Objectives:
 - Ice Shell & Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange
 - Composition: Understand the habitability of Europa's ocean through composition and chemistry
 - Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities
 - Reconnaissance: Characterize scientifically compelling sites, and hazards, for a potential future landed mission to Europa

Overview of Selected Proposals

Instrument Type	Name	PI	instituion
Plasma	PIMS	Joseph Westlake	APL
Magnetometer	ICEMAG	Carol Raymond	JPL
Shortwave IR Spectrometer	MISE	Diana Blaney	JPL
Camera	EIS	Elizabeth Turtle	APL
Ice Penetrating Radar	REASON	Don Blankenship	Univ. Texas/JPL
Thermal Imager	E-THEMIS	Phil Christensen	ASU/Ball
Neutral Mass Spectrometer	MASPEX	Hunter Waite	SWRI
UV Spectrograph	E-UVS	Kurt Retherford	SWRI
Dust Analyzer	SUDA	Sascha Kempf	Univ. Colorado

Europa Multi-Flyby Mission Concept Overview

Science	
Objective	Description
Ice Shell & Ocean	Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange
Composition	Understand the habitability of Europa's ocean through composition and chemistry.
Geology	Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities.
Recon	Characterize scientifically compelling sites, and hazards for a potential future landed mission to Europa

- Conduct 45 low altitude flybys with lowest 25 km (less than the ice crust) and a vast majority below 100 km to obtain global regional coverage
- Traded enormous amounts of fuel used to get into Europa orbit for shielding (lower total dose)
- Simpler operations strategy
- No need for real time down link

Key Technic	cal Margins
*37 - 41% Mass	40% Power
IVIASS	rowei

^{*} Depends on Launch Opportunity and Launch Vehicle

Europa Multi-Flyby Mission Coverage 13F7-A21 Trajectory

250 km to 750 km \rightarrow 6

80 km to 100 km \rightarrow 9

Spacecraft Trajectory

 $25 \text{ km} \le r_{\text{alt}} \le 50 \text{ km}$ $50 \text{ km} < r_{\text{alt}} \le 400 \text{ km}$ $400 \text{ km} < r_{\text{alt}} \le 1000 \text{ km}$ $1000 \text{ km} < r_{\text{alt}} \le 4000 \text{ km}$

■ 25 km → 10

 $50 \text{ km} \rightarrow 18$

Questions?

